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The use of chromatographic descriptors as alternative for Caco-2
permeability in drug absorption screening was evaluated.
Therefore, retentions were measured on 17 Reversed-Phase Liquid
Chromatographic systems, considered to be orthogonal or dissimilar,
and an Immobilized Artificial Membrane (IAM) system. Retentions
on a Micellar Liquid Chromatography system were taken from the
literature. From this set of systems, those found dissimilar for the
used data set were selected. The retention factors on these systems
were then used as descriptors in QSAR modelling. Modelling was
performed using Stepwise Multiple Linear Regression. This resulted
in a model using only two chromatographic systems with good
descriptive and acceptable predictive properties.

A high qualitative model was obtained by combining both chroma-
tographic systems selected in the previous model with a lipophilicity
parameter (the squared Moriguchi n-octanol/water partition coeffi-
cient) and the molecular volume.

Introduction

Assessment of ADME-Tox (Absorption, Distribution,

Metabolisation, Elimination, and Toxicity) properties of potential

drug molecules constitutes one of the major bottlenecks of

modern drug development. When a molecule, found to be

potentially useful since it interacts with a target molecule, fails in

the preclinical phase where the ADME-Tox properties are investi-

gated in vivo, it causes a loss of time and resources for the

industry. Therefore the pharmaceutical industry is interested in

the development of cheap and fast screening approaches for

ADME-Tox properties. This paper will focus on the problem of

screening for the absorption properties of molecules.

To replace the complex, time-consuming and labour-

intensive in vivo experiments, several in vitro techniques were

developed. The latter can be divided in animal tissue-based,

cell-based and artificial membrane-based methods. In animal

tissue-based methods, excised intestinal tissue is used to study

intestinal drug absorption. A solution, containing the drug, is

applied to one side of the tissue and the rate of drug absorp-

tion is measured by the disappearance of the drug at one side

and/or the appearance at the other. Examples of tissue-based

methods are the perfused intestinal segments, the everted sac

technique and the side-by-side Ussing chambers. One of the

major drawbacks is that the viability of the isolated tissue is

difficult to maintain, since the tissue is cut off from the blood

circulation and therefore needs continuous oxygenation (1, 2).

A high variety of different cell monolayers also has been

used to study gastro-intestinal absorption of drugs (1–4).

Mostly human tumor cells are used since they grow rapidly in

confluent monolayers followed by a spontaneous differenti-

ation. The most popular cell line is Caco-2. Caco-2 cells origin-

ate from a human adenocarcinoma that undergoes spontaneous

differentiation to enterocytes in culture. To obtain a confluent

monolayer, these cells are grown on a semi-permeable porous

filter. The solution containing the investigated substance is

applied at the apical side of the monolayer. After incubation

samples are taken in the compartments at both sides of the

monolayer (1–5). Different studies showed good correlation

between the Caco-2 permeability and the human intestinal

absorption (3–8). One of the major drawbacks of the tech-

nique is the high interlaboratory variability between the

cell-lines and thus of the measured Caco-2 permeability. Even

though this method is very popular, the culture of the cell line

still represents high costs and a high work load. Therefore

methods based on artificial membranes were developed. The

most popular in this category is the Parallel Artificial Membrane

Permeability Assay (PAMPA) (1, 2). A PAMPA experiment is run

on a 96-well plate that consists of two parts. The bottom part

is filled with a buffer containing the investigated substance. On

top of it an artificial phospholipid/dodecane membrane sup-

ported by a polycarbonate filter forms a barrier. The well plate

with the acceptor wells is placed on top of the membrane.

After incubation, concentrations of the investigated substance

in donor and acceptor wells are measured using a 96-well UV

spectrophotometric plate reader. Even though several authors

(9–15) found good correlations between PAMPA results and

human intestinal absorption, the method suffers from some

serious drawbacks. The method is limited to molecules measur-

able with UV spectrophotmetry and requires long incubation

times, which might be problematic for unstable molecules. The

method also measures only passive diffusion (1, 2).

Since several years, attention has been paid to the use of

chromatographic techniques in screening for absorption of

molecules. The developed techniques use either classical

reversed-phase conditions (16), special stationary phases or

special mobile phases (1, 2, 17, 18). In IAM systems, columns

are used that are essentially reversed-phase liquid chromato-

graphic columns where the classic hydrocarbon groups

bonded to the solid silica support are replaced by covalently-

bonded membrane phospholipids. In this way a monolayer of

phospholipids bonded to silica is obtained that should mimic
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the lipophilic environment of the cell membrane (1, 2, 19).

Good correlations were obtained between IAM retention

factors and membrane permeability processes as Caco-2 per-

meability (3, 4) and gastro-intestinal absorption (1, 2, 19–23).

Micellar liquid chromatography typically uses a reversed-

phase HPLC column combined with a mobile phase containing

a surfactant above its critical micellar concentration, forming

micelles in the mobile phase (24). These micelles show struc-

tural similarities with the structure of the cell membranes,

making MLC retentions interesting for the prediction of

membrane permeability. A few recent studies have shown the

potential of MLC methods in screening for drug absorption

(18, 25–27).

In this paper the use of dissimilar chromatographic systems

in screening for absorption was evaluated. Therefore a data set

(25) containing the Caco-2 permeability values for 28 structur-

ally diverse drug molecules was used. Retention of the mole-

cules was measured on a set of 17 dissimilar chromatographic

systems. The data set was extended with the retentions mea-

sured on an IAM system and the MLC retentions, extracted

from literature (25). In a first step, the system, with the highest

correlation with the Caco-2 permeability values as well as the

systems orthogonal to the latter were selected. The idea here is

that orthogonal systems are based on different retention

mechanisms and thus provide different information about the

investigated molecules. In a second step, Multiple Linear

Regression models were built using the selected systems. They

were evaluated for their descriptive and predictive properties.

In a third step, it was evaluated whether better models could

be obtained by combining the chromatographic with some

theoretical descriptors.

Theory

Orthogonal chromatographic systems

In statistics two parameters are orthogonal when their correl-

ation coefficient is zero. In the context of chromatographic

systems the term orthogonal is not used in its strict mathemat-

ical sense. Orthogonal systems are defined as systems that

differ significantly in chromatographic selectivity. This means

that two systems with a low correlation coefficient (e.g., r ,

0.4) between their retention data can also be considered or

called orthogonal. In this case the term dissimilar chromato-

graphic systems could be preferred (28). A discussion on the

selection of orthogonal, similar or dissimilar systems can be

found in references (28–30). In this study seventeen orthogon-

al RPLC systems, identified by Van Gyseghem et al. (28), were

used. They were selected from a set of 46 systems. In the

selected set not all pairs of systems have a mutual correlation

coefficient below 0.4. The systems are selected in such a way

that they are the most dissimilar towards the other systems

tested.

Chemometric Techniques

Multiple linear regression

Multiple linear regression (MLR) is the most widely applied

multiple linear modelling technique. Often MLR can not be

used to model complex QSAR data due to the fact that the

number of descriptive variables exceeds the number of objects.

Therefore variable selection prior to modelling is necessary. In

this work, a stepwise selection procedure was used. In this

technique a forward selection procedure iterates with a back-

ward elimination procedure. The forward selection procedure

starts with the variable that has the highest correlation with

the response variable, for example the Caco-2 permeability. If

this variable results in a significant regression, evaluated with

an overall F-test, the variable is retained and selection con-

tinues. In a next step the variable that gives the largest signifi-

cant increase of the regression sum of squares, evaluated with

a partial F-test, is added. After each step of the forward selec-

tion procedure, the backward elimination procedure is applied.

In this procedure a partial F-test for the variables already in the

model is performed. If a variable is found that does not

longer contributes significantly to the regression it is removed

from the model. The iterative process is repeated until the

model can not be improved anymore by adding or removing

variables (31).

Clustering

To cluster the different systems according to their similarity,

the Weighted Pair Group Method using arithmetic Averages

(WPGMA) was applied.

This is a hierarchical agglomerative clustering technique.

Hierarchical means that smaller clusters are included in larger

ones or vice versa, and agglomerative means that objects are

sequentially merged (32). The goal of the method is to classify

m objects in m-1 steps. In each consecutive step, the two most

similar objects (clusters) are merged. The objects (clusters) to

merge are derived from the dissimilarity matrix, representing

the dissimilarity between each pair of objects (clusters).

Dissimilarities or dissimilarity coefficients are positive numbers

that are small if two objects are closely related and large if they

differ (28–30). In this study 1-jrj, with r the pearson correl-

ation coefficient, was used as dissimilarity criterion (29, 30).

The two least dissimilar objects (clusters) are merged and the

dissimilarity matrix is recalculated for the new situation (32).

In WPGMA, also called weighted average linkage, the dissimi-

larity between two clusters is defined as the average of all dis-

similarities calculated between any object in both clusters. This

method considers all objects equally important and thus having

the same weight. This means that clusters consisting of a larger

number of objects carry a larger weight (33, 34). The results of

the clustering are represented as a dendrogram.

Molecular descriptors

A molecular descriptor is either the final result of a logical and

mathematical procedure, which converts chemical information

from a symbolic representation of the molecule into a useful

numerical value (theoretical descriptor), or is the result of a

standardized experiment (experimental descriptor) (35).

Molecular descriptors can be classified in different ways, e.g.

in experimental and theoretical descriptors, as indicated above.

The latter are further subdivided depending on the molecular

representation they are derived from. Descriptors derived

from a molecular formula are called zero-dimensional (0D)

(e.g., molecular weight, atom-counts . . .). One-dimensional

176 Deconinck et al.



(1D) descriptors are derived from a substructure list represen-

tation of the molecule [(e.g. log P calculated with the method

of Rekker (360)]. Two-dimensional (2D) [e.g. connectivity

indices (35)] and three-dimensional (3D) [e.g., the molecular

volume, different geometrical and steric descriptors (35)]

descriptors are calculated from a topological and a geometrical

molecular representation, respectively. Finally, the descriptors

derived from a stereo-electronic or lattice representation

are called four-dimensional (4D). For more information on

theoretical descriptors we refer to (35).

Materials and Methods

Drugs and reagents

The 28 substances used are listed in Table I, together with

their supplier, CAS-number and Caco-2 permeability value,

given as log Papp. The latter values are taken from reference

(25). For all substances, sample solutions were prepared by dis-

solving 1 mg substance in 10 mL. To inject on the orthogonal

systems, solutions were prepared in 1:1 (v/v) organic modifier/
Milli-Q water. The organic modifier used was either acetonitrile

or methanol, both HPLC grade from Fisher Scientific

(Loughborough, Leicestershire, UK).

For the IAM system, the solutions are prepared by dissolving

the appropriate amount of test component in mobile phase.

Phosphoric acid solution min. 85% (Carlo Erba, Milan, Italy),

acetic acid glacial 100%, anhydrous disodium tetraborate, boric

acid, disodium hydrogenium phosphate dihydrate, sodium dihy-

drogenium phosphate monohydrate, sodium hydroxide pellets,

all pro analysis (GR quality) (all from Merck, Darmstadt,

Germany), sodium dodecyl sulfate (SDS) and polyoxyethylene

lauryl ether (both from Sigma-Aldrich, Steinheim, Germany)

were used in the mobile phases.

Chromatographic conditions

All measurements were carried out on an HPLC-instrument

consisting of an L-7100 liquid chromatograph pump, an L-7612

solvent degasser, an L-7250 autosampler with a 100 mL loop, an

L-7350 column oven, an L-7400 UV detector and a D-7000

interface (Merck-Hitachi, Tokyo, Japan). The chromatographic

data were gathered and treated with the D-7000 HPLC System

Manager software (Merck-Hitachi).

The chromatographic conditions for the set orthogonal

systems are summarized in Table II. Nine stationary phases were

used: (a) a Chromolith Performance, RP-18e column (100 x

4.6 mm i.d.) (Merck), a monolithic phase, (b) a Zorbax

Extend-C18 column (150 x 4.6 mm i.d., 3.5 mm) (Agilent, Palo

Alto, California, USA), a bidentate bonded and double-

endcapped octadecylsilica column, (c) a ZirChrom-PS column

(100 x 4.6 mm i.d., 3 mm) (ZirChrom Separations, Anoka, MN,

USA), a zirconia-based phase coated with polystyrene, (d) a

Zorbax Eclipse XDB-C8 column (150 x 4.6 mm i.d., 5 mm)

(Agilent), a densily bonded double-endcapped C8-silica column,

(e) a Betasyl Phenyl Hexyl column (100 x 4.6 mm i.d., 5 mm)

(Thermo Hypersyl Keystone, Cheshire, UK), a phenyl-hexyl-

Table I
The Set of 28 Substances and their log Papp Values

Substance (concentration
in mg/10ml)

Distributor CAS number Log Papp

Acebutolol.HCl Sigma-Aldrich (Steinheim, Germany) 37517-30-9 26.35
Alprenolol.HCl Sigma-Aldrich 13655-52-2 24.54
Astemizole J&J Pharmaceutical Research &

Development (Beerse, Belgium)
68844-77-9 25.86

Atenolol Sigma-Aldrich 29122-68-7 26.68
Carbamazepine Sigma-Aldrich 298-46-4 24.55
Chlorpheniramine maleate Sigma-Aldrich 113-92-8 24.43
Chlorpromazine.HCl Fluka Chemie (Buchs, Switzerland) 69-09-0 25.03
Cimetidine SK&F (Herts, United Kingdom) 51481-61-9 26.04
Clonidine.HCl Sigma-Aldrich 4205-90-7 24.52
Desipramine.HCl Sigma-Aldrich 50-47-5 24.76
Diphenhydramine.HCl Sigma-Aldrich 147-24-0 24.50
Enilconazole J&J Pharmaceutical Research &

Development
35554-44-0 24.57

Esmolol.HCl Du Pont De Nemours (Le Grand
Saconnex, Switzerland)

103598-03-4 25.52

Imipramine.HCl Sigma-Aldrich 50-49-7 24.53
Ketoconazole J&J Pharmaceutical Research &

Development
65277-42-1 24.67

Labetalol.HCl Sigma-Aldrich 36894-69-4 24.89
Mebenazole J&J Pharmaceutical Research &

Development
31431-39-7 24.60

Metoprolol Astra Hassle AB (Lund, Sweden) 37350-58-6 24.56
Oxprenolol.HCl Cynamid Benelux n.v. (Brussels, Belgium) 6452-71-7 24.55
Pindolol Sigma-Aldrich 13523-86-9 24.64
Promazine.HCl Sigma-Aldrich 53-60-01 24.54
Propranol.HCl Fluka (Neu-Ulm, Switzerland) 525-66-6 24.59
Ranitidine.HCl Sigma-Aldrich 66357-35-5 26.08
Terconazole J&J Pharmaceutical Research &

Development
67915-31-5 24.73

Thioridazine Merck (Darmstadt, Germany) 50-52-2 25.24
Timolol maleate Sigma-Aldrich 26839-75-8 24.81
Trifluoperazine.HCl Sigma-Aldrich 117-89-5 25.39
Flubenazole J&J Pharmaceutical Research &

Development
31430-15-6 24.71

Table II
Chromatographic Conditions for the 17 Orthogonal RPLC Systems [30]

No. Stationary phase Mobile phase conditions and column temperature

CS1 Chromolith
Performance

methanol/0.08M sodium phosphate buffer pH 3.0 from 10:90 to
75:25% (v/v) in 4 min; flow rate 2.0 mL/min; 408C

CS2 Chromolith
Performance

methanol/0.08M sodium phosphate buffer pH 6.8 from 10:90 to
75:25% (v/v) in 3 min; flow rate 2.0 mL/min; 408C

CS3 Zorbax Extend-C18 methanol/0.08M sodium borate buffer pH 10.0 from 10:90 to
75:25% (v/v) in 6 min; flow rate 1.0 mL/min; 408C

CS4 ZirChrom-PS methanol/0.08M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 6 min; flow rate 1.5 mL/min; 408C

CS5 ZirChrom-PS methanol/0.08M sodium phosphate buffer pH 6.8 from 10:90 to
70:30% (v/v) in 4 min; flow rate 1.5 mL/min; 408C

CS6 ZirChrom-PS methanol/0.08M sodium borate buffer pH 10.0 from 10:90 to
70:30% (v/v) in 4 min; flow rate 1.5 mL/min; 408C

CS7 ZirChrom-PS acetonitrile/0.04M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS8 ZirChrom-PS acetonitrile/0.04M sodium phosphate buffer pH 6.8 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS9 Zorbax Eclipse
XDB-C8

methanol/0.04M sodium phosphate buffer pH 6.8 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS10 Zorbax Eclipse
XDB-C8

acetonitrile/0.04M sodium phosphate buffer pH 6.8 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS11 Betasil Phenyl Hexyl methanol/0.04M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS12 Betasil Phenyl Hexyl acetonitrile/0.04M sodium phosphate buffer pH 6.8 from 10:90 to
70:30% (v/v) in 8 min; flow rate 1.0 mL/min; 408C

CS13 Suplex pKb-100 methanol/Britton-Robinson buffer pH 2.5 from 30:70 to 75:25%
(v/v) in 20 min; flow rate 1.0 mL/min; 408C

CS14 ZirChrom-PBD methanol/Britton-Robinson buffer pH 2.5 from 30:70 to 75:25%
(v/v) in 20 min; flow rate 1.0 mL/min; 408C

CS15 ZirChrom-PBD acetonitrile/0.04M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 5 min; flow rate 2.0 mL/min; 75 8C

CS16 Shodex Rspak
DE-413

methanol/0.04M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 5 min; flow rate 1.2 ml/min; 408C

CS17 Discovery
RP-AmideC16

acetonitrile/0.04M sodium phosphate buffer pH 3.0 from 10:90 to
70:30% (v/v) in 5 min; flow rate 1.5 ml/min; 408C
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silica column, (f) a Suplex pKb-100 column (150 x 4.6 mm i.d.,

5 mm) (Supelco, Bellefonte, PA, USA), a base-deactivated hexade-

cylsilica column, (g) a ZirChrom-PBD column (100 x 4.6 mm

i.d., 3 mm) (ZirChrom Separations), a zirconia-based phase

coated with polybutadiene-polymer, (h) a Shodex RSpak DE-413

column (150 x 4.6 mm i.d., 4 mm) (Showa Denko, Tokyo, Japan),

a polymethacrylate-packed column and (i) a Discovery

RP-Amide C16 column (100 x 4.6 mm i.d., 5 mm) (Supelco), a

high-purity hexadecylsilica with a polar-embedded amide func-

tion bonded to the silica surface with a propyl group (28, 29).

Gradient elution was used and the gradient profiles are summar-

ized in Table II.

The IAM system (CS18) was that described by Nasal et al.

(16). The stationary phase was an IAM-PC-MG column (150 x

4.6 mm i.d., 12 mm) (Regis Technologies Inc, Mortom Grove),

an IAM phase formed by 1-myristoyl-2((13-carboxyl)-

tridecoyl)-sn-3-glycerofosfocholin, chemically bonded to silica

propylamin. The mobile phase consisted of a mixture of

30:70 (v/v) acetonitrile/ 0.1 M phosphate buffer pH 7.0.

Measurements were carried out isocratically.

All buffers were filtered through a 0.2 mm membrane filter

(Schleicher & Schuell, Dassel, Germany).

The retentions values on a MLC system using SDS as surfac-

tant (CS19) were taken from reference (25). A Discovery C8

silica column (50 x 4.6 mm i.d., 5 mm) (Supelco) was used as

stationary phase. The mobile phase consisted of a mixture of

15:85 (v/v) n-propanol–0.01M phosphate buffer-0.15M SDS-pH

7.4. (25).

Molecular structure optimization

The 3-dimensional structures of the molecules were drawn and

optimized using the Hyperchem 6.03 Professional software

(Hypercube, Gainesville, Florida). After inputting the molecule

as a topological structure, geometry optimisation was obtained

by the Molecular Mechanics Force Field method (MMþ) using
the Polak-Ribière conjugate gradient algorithm with a RMS

gradient of 0.1 kcal/(Å mol) as stop criterion. The optimisation

of the structure results in a data matrix consisting of the

Cartesian coordinates of the atoms, defining the structure. This

data matrix was used to calculate molecular descriptors.

Descriptor calculation

The Hyperchem 6.03 Professional software (Hypercube,

Gainesville, Florida, USA) was used to calculate solvent

accessible surface area (SASA), molecular volume (HyVol),

(Ghose-Crippen) octanol/water partition coefficient (HyLogP)

(35), hydration energy, molar refractivity, molar polarisability

and molar mass. The Mc Gowan volume, one of the descriptors

of the linear free energy relationship (LFER), was calculated

manually (37, 38).

The Dragon 5.0 Professional software (39) allows the calcula-

tion of 20 different classes of molecular descriptors. In this

paper, Dragon was used to calculate some additional molecular

properties like the number of H-acceptors (nHacc), the

number of H-donors (nHdonn), the polar surface area (PSA),

the Moriguchi n-octanol/water partition coefficient (MlogP),

the squared MlogP values (MlogP2), the hydrophilic factor (Hy)

and the Ghose-Crippen molar refractivity (AMR).

Model building

All models were built using SPSS version 13.0 for Windows

(SPSS inc, Chicago, IL). All data was autoscaled prior to model-

ing. Clustering and cross validation was performed using in

house algorithms written for Matlab 5.3 (The Mathworks,

Natick, MA).

Results and Discussion

Chromatographic measurements

The retention of the 28 drug molecules was measured on each

system. The logarithms of the retention factors log k were

used. Results are not shown here but are available as supple-

mentary data with the online version of the paper. For the

IAM-system (CS18) the dead volume was determined by inject-

ing a mixture of 1:1 (v/v) methanol/Milli-Q water and for the

other 17 systems (CS1-CS17) of 1:1 (v/v) organic modifier/
Milli-Q water. The organic modifier was either methanol or

acetonitrile. All dead volume measurements were repeated

three times. The retentions of the MLC system (CS19) were

taken from reference (25).

Retention times were corrected for column ageing (40). for this

purpose, a reference substance (desipramine) was injected after

each tenth sample injection. The retention of a substance was

corrected relativily to the retention time change observed for the

reference substance. Corrections were carried out as follows:

yi ;corrected ¼ yi;measured þ yref ;begin

� ð p þ 1� iÞyref ;before þ iyref ;after

p þ 1

� � ð1Þ

where i ¼ 1, 2, . . ., p and p is the number of injections between

two consecutive injections of the reference substance.

yi,corrected and yi,measured are the corrected and the measured

retention times of a test substance, respectively, yref,begin is the

retention time of the reference substance, measured before

the start of the test samples injections, yref,before and yref,after are

the retention times of the reference substance before and after

a series of ten injections in which the corrected test substance

is measured [40].

Selection of the most dissimilar systems

The set of 17 systems was selected earlier using a data set con-

sisting of 68 structurally diverse molecules (28). Since in this

study another data set of 28 structurally diverse molecules was

used and the fact that the seventeen systems were extended

with two systems, i.e. the IAM- (CS18) and the MLC

(CS19)-system, it was necessary to recheck the orthogonality

of the systems. The orthogonality between the systems was

determined from the Pearson’s correlation coefficients

between the log k values for the 28 substances. To visualise

the dissimilarity of the systems weighted-avarage-linkage clus-

tering (WPGMA) was applied. The WPGMA-dendrogram is

shown in Figure 1. It shows the dissimilarity, defined as 1- jrj,
with r the Pearson’s correlation coefficient, as a function of the

system number. When drawing an arbitrary line at 0.5, three

groups of similar systems can be observed as well as three indi-

vidual systems (CS4, CS5 and CS13) considered orthogonal
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with each other and the rest of the set. The IAM (CS18) and

the MLC (CS19) are both in group II. The retentions on both

systems are rather highly correlated (r ¼ 0,75) and the correla-

tions with the other systems in the group are above 0,60. This

means that the IAM (CS18) and the MLC (CS19) systems can

not be considered orthogonal with each other, nor with the

other systems in the set and will not add supplementary

information to the 17 systems of the orthogonal set.

Based on the results shown in Figure 1, the set of systems

can be reduced to six systems: One system of each group of

similar systems and the three isolated systems (CS4, CS5 and

CS13), considered dissimilar.

The selection of the systems from the three similar groups

was done according to the principle of the Stepwise MLR algo-

rithm. The algorithm starts with selecting the variable with the

highest correlation with the response variable, i.e. with log Papp
(31). Therefore the system with highest correlation with log

Papp was selected. Further, the systems most dissimilar to this

system were also maintained in the set. System 11 shows the

highest correlation (r ¼ 0.65) with log Papp. Figure 2 shows the

correlation between log Papp and the log k values on system 11.

This system used a Betasil Phenyl Hexyl stationary phase. This

column is a mixed mode column with both aromatic phenyl

and aliphatic hexyl groups. The presence of aromatic groups

provides the possibility of p-p electron interactions with the

chromatographed compounds. This kind of interactions seems

important in the process of Caco-2 permeation and more gen-

erally in the absorption of molecules. In previous work (41),

we observed the importance of zirconium-based stationary

phases in the prediction of gastro-intestinal absorption. These

columns also show p-p electron interactions (42) with the

chromatographed compounds. The IAM (CS18) and MLC

(CS19) systems show very low correlation (r ¼ 0.29 and r ¼

0.26, respectively) with log Papp, meaning that neither of the

systems could be used individually in a regression model for

Caco-2 permeability. This is not surprising. Detroyer et al. (25)

showed for the same data set that the retentions on the MLC

system are not linearly correlated with the log Papp values.

They could mark cut-off values for the retentions, between

which molecules show permeability through the Caco-2 layer.

The retentions on the IAM system showed a similar trend

when plotted against log Papp, even though no clear cut-off

values could be defined.

The correlation matrix for all systems is represented by a

color map (Figure 3) in which the systems were sorted by

increasing dissimilarity based on the WPGMA-dendrogram

(Figure 1).

Since MLR is not applicable with highly intercorrelated

descriptive variables, only systems with a correlation coefficient

with CS 11 below 0.4 were selected. Only 5 systems fulfill this

criterion, i.e. CS13, CS5, CS4, CS10 and CS8 (Figure 3). The first

three are those considered dissimilar to all other systems, CS

10 belongs to group III and CS 8 to group I (Figure 3). Since

CS11 belongs to group II, all groups of the WPGMA-

dendrogram (Figure 1) are represented in the set of 6, which

will now be used to model log Papp.

Models using the selected chromatographic descriptors

In the previous section six dissimilar chromatographic systems

were selected. The logarithms of the retention factors on the

Figure 2. Correlation between LogPapp and the log k values on system 11 (CS11).

Figure 3. Color map representing the correlation matrix for the 19 chromatographic
systems. The systems are arranged according to increasing dissimilarity.

Figure 1. WPGMA-dendrogram for the 19 chromatographic systems.
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selected systems were used as descriptive variables for model-

ling log Papp. Each time two different models were build: one

using just the log k values for the six systems and one includ-

ing also the quadratic term of the retention factors. In a first

step classical MLR models, using all six systems, were built.

Following models were obtained:

ŷ ¼� 6:53þ 0:53 CS4þ 0:03 CS5� 0:70 CS8

� 0:02 CS10þ 2:86 CS11� 0:92 CS13
ð2Þ

ŷ ¼� 5:48þ 0:81 CS4� 0:30 CS5þ 0:54 CS8� 0:36

CS10þ 0:93 CS11� 3:70 CS13� 0:33 CS42 þ 1:0 CS52

� 2:24 CS82 þ 0:18 CS102 þ 1:31 CS112 þ 2:31 CS132

ð3Þ

These models show correlation coefficients of 0.75 and 0.80

between measured and predicted values, standard errors of the

estimate of 0.49 and 0.52, F values, obtained for lack of fit of

4.40 and 2.15, which indicate significant regressions (p , 0.05)

and root mean squared errors of cross-validation (RMSECV) of

0.73 or 32,4% and 1.00 or 44.4%, obtained by leave-one-out

cross-validation (LOOCV). The percentage was calculated over

the range of log Papp values in the data set. Concerning the

significance of the different coefficients in the equation only

the constant function and the coefficient for CS11 are signifi-

cant (p , 0.05) for model 2. In model 3 none of the regression

coefficient could be considered significant at the 0.05 level.

From the residual plots (results not shown) it could be seen

that one molecule shows a high residual. This molecule is ace-

butolol. Investigating the data set showed that this molecule

has a deviating retention behaviour. Acebutolol always had a

lower retention factor than the other molecules with similar

log Papp values on the systems most correlated with log Papp
(CS11, CS6 and CS16). Therefore it was decided not to include

acebutolol in further data analysis. New MLR models were built

with the 27 remaining molecules. Following equations were

obtained:

ŷ ¼� 6:01þ 0:46 CS4þ 0:05 CS5� 0:86 CS8� 0:11

CS10þ 2:82 CS11� 1:22 CS13
ð4Þ

ŷ ¼ �6:34þ 0:74 CS4� 0:13 CS5þ 2:04 CS8þ 0:51

CS10þ 1:92 CS11� 2:30 CS13� 0:26 CS42 þ 0:42

CS52 � 3:00 CS82 � 0:58 CS102 þ 0:36 CS112 þ 1:11 CS132

ð5Þ

These models show correlation coefficients between measured

and predicted values of 0.84 and 0.86 respectively, standard

errors of the estimate of 0.37 and 0.41, F values, obtained for

lack of fit of 7.76 and 3.34, which indicate a significant regres-

sion (p , 0.05) and RMSECV values of 0.62 or 27.5% (4) and

0.78 or 34.6% (5), obtained by LOOCV. For model 4 only three

regression coefficients are significant at the 0.05 level, i.e. the

constant function and the factors concerning CS11 and CS13.

For model 5 none of the regression coefficients are significant

(p , 0.05). From these results it can be seen that the introduc-

tion of quadratic terms of the retention factors does not

improve the model, since it results in higher standard errors

and cross-validation errors. From the investigation of the correl-

ation and the residual plots (not shown) of both models it

could be seen that the majority of the molecules are quite well

described by the models, but that the models can be improved.

Also the high cross validation errors and the relatively high

correlation coefficients point at possible overfitting, especially

for model 5.

Since in model 4 the majority of the coefficients and in

model 5 all coefficients in the equations are insignificant, a lot

of these factors introduce noise in the model. Therefore MLR

models were built using a stepwise selection procedure. The

stepwise procedure selects only the significant variables

(systems) to model the response variable (log Papp). Following

models were obtained:

ŷ ¼ �6:06þ 2:71 CS11� 1:28 CS13 ð6Þ

ŷ ¼ �11:29þ 16:89 CS11� 10:79 CS112 ð7Þ

The obtained models have correlation coefficients of respect-

ively 0.79 and 0.80, standard errors of the estimate of 0.38 and

0.37, F values, obtained for lack of fit of 20.20 and 22.24, which

indicate a significant regression (p , 0.05) and RMSECV values

of 0.39 or 17.3% for model 6 and 0.37 or 16.3% for model 7,

obtained by LOOCV. Even if the correlation coefficients are

comparable to the models obtained without feature selection,

the cross-validation errors are significantly lower, pointing at

better predictive properties. This is an indication for the fact

that the models shown in equation 4 and 5 were overfitting.

From the results it can also be seen that the models with or

without quadratic terms have comparable properties. Model 6

consists of three terms, using the retention on systems CS11

and CS13, which was expected based on the significance of

the different factors in equation 4. Model 7 also consists of

three terms but only uses the retentions on system CS11,

which can be an advantage concerning workload, since the

retention on only one system has to be measured. Not surpris-

ingly the system is selected with the highest correlation with

log Papp. Figure 4 shows the residual plots for both models.

The models obtained in equation 6 and 7 have acceptable

descriptive and predictive properties, since the experimental

error for permeability measurements is around 0.3 log units

and the fact that only three molecules fall out of the residual

range of -0,4 to 0,4 for model 6 and four for model 7. Still the

residual plots do not show a complete random distribution of

the residuals and quite high residuals are obtained for some of

the molecules. Therefore it was considered that possibly better

models could be obtained by adding some theoretically derived

molecular properties to the data set and building a new

stepwise MLR model, combining both theoretical and chroma-

tographic descriptors.

Models combining chromatographic and theoretical
descriptors

The molecular properties calculated in section 3.4. were added

to the set of descriptive variables, resulting in a descriptor set

combining theoretical molecular properties and chromato-

graphic descriptors. Stepwise MLR was used to select the most
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significant descriptors to model log Papp. Two models were

built: one using just the theoretical descriptors and the log k

values and one using the same set and adding the quadratic

terms of the log k values. Both sets resulted in exactly the

same model:

ŷ ¼ �6:69� 0:92 MlogP2 � 0:66 HyVolþ 3:90 CS11

� 0:91 CS13 ð8Þ

The obtained model has a correlation coefficient of 0.91, a

standard error of the estimate of 0.27, an F value, obtained for

lack of fit of 24.84, which indicate a significant regression (p ,

0.05) and a RMSECV of 0.31 or 13.7%, obtained by LOOCV. The

stepwise procedure selected the two chromatographic systems

of the previous models (CS11 and CS13), together with MlogP2

and HyVol as variables to describe the data set.

Adding the calculated properties, i.e. MlogP2 and HyVol, mea-

sures for lipophilicity and molecular volume respectively, sig-

nificantly improved the properties of the model, compared to

the model obtained in equation 6. Both selected properties are

known to play an important role in the process of membrane

permeation. The lipophilicity is one of the key properties

determining the passage through cell membranes and thus also

a very important property for the passage through the Caco-2

cell monolayer (43–45). Also the molecular volume plays an

important role in determining if a molecule will pass the cell

membrane. This is for instance reflected by the use of the Mc

Gowans volume in the Linear Free Energy Relationships built

for different membrane permeability processes (37, 38, 46).

Just for comparison a stepwise MLR model was built using

only the calculated theoretical descriptors. Following model

was obtained:

ŷ ¼ �5:21� 1:81 nHdonnþ 1:21 PSA � 0:96 SASA

þ 1:46 HylogP ð9Þ

The obtained model has a correlation coefficient of 0.73, a

standard error of the estimate of 0.44, an F value, obtained for

lack of fit of 6.41, which indicate a significant regression (p ,

0.05) and a RMSECV of 0.62 or 27.4%, obtained by LOOCV.

From the described results it is clear that the selection of

two chromatographic descriptors, together with two theoretic-

al descriptors by the stepwise procedure, designed to select

the most significant variables out of the descriptor set, results

in a better model. It should also be mentioned that the model

based on only chromatographic descriptors has better proper-

ties than model 9.

In conclusion it can be stated that for this data set the com-

bination of chromatographic with theoretical descriptors gives

better results than those obtained with the two types of

descriptors separately. It can also be seen that this model

shows a cross-validation error (0.31) which is comparable with

the experimental error for the permeability measurements,

pointing at good predictive properties. Figure 5 shows the re-

sidual plot for the model presented in equation 8. From the

plot it can clearly be seen that smaller residuals were obtained

as well as a better distribution of these residuals compared to

the model presented in equation 6.

Conclusions

This research showed that chromatographic descriptors can be

useful in modelling membrane passage properties of drugs. It

was shown that for the structural diverse data set used in this

paper higher correlations could be obtained between the re-

tention and the permeability parameters for a chromatographic

system based on a Betasyl Phenyl Hexyl stationary phase, than

for the IAM and the MLC systems. This is an advantage because

this column is less sensitive for column ageing than the IAM

column and no special mobile phase is necessary in contrast

with MLC. This results in less labour intensive measurements

and better reproducibility.

Figure 5. Stepwise MLR model combining the selected chromatographic descriptors
and some theoretical molecular properties: residual plot.

Figure 4. Stepwise MLR model using the selected chromatographic descriptors: (a)
residual plot; (b) residual plot for the model including quadratic terms.
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It was also shown that the combination of the two most

orthogonal systems in the set, resulted in a model that gives a

close description of the used data set. This shows that the use

of a combination of orthogonal systems can result in better

models compared to the use of a single chromatographic or

chromatographic based method as IAM. Orthogonal systems are

based on different retention mechanisms and so describe

different properties of the chromatographed molecules.

From the results obtained with the different models it could

also be seen that both the models based on chromatographic

descriptors as the ones based on the combination of chromato-

graphic descriptors and theoretical ones give better results

than the model based on only in silico descriptors.

The final model presented, consists of four descriptors: two

chromatographic and two theoretical descriptors. The two

theoretical descriptors can easily be calculated with computer

software, while the use of only two chromatographic systems,

limits the work load of the experimental work. The model is

easily applicable in high throughput screening and can be

considered as a reasonable alternative for Caco-2 in early

ADME-Tox screening. This final model shows a correlation

coefficient between real and predicted values of 0.91 and a

cross validation error of 0.31 log units, which is comparable to

the experimental error for permeability measurements of

0.3 log units. Chan et al. [47] presented a linear model for

Caco-2 permeability, based on IAM retention and the molecular

weight. This model showed a correlation of only 0.86 and no

evaluation of the predictive abilities was performed. The advan-

tage of our model is that higher correlation is obtained and

that no retentions on the very sensitive and expensive IAM

columns are used.

Acknowledgments

K. Decq for her help and technical support. This research

was financed with a specialization grant from the Institute for

the Promotion of Innovation by Science and Technology in

Flanders (IWT).

References

1. Hidalgo, I.J. Assessing the absorption of new pharmaceuticals.

Current Topics in Medicinal Chemistry 2001, 1, 385–401.
2. Balimane, P.V.; Chong, S.; Morrison, R.A. Current methodologies

used for evaluation of intestinal permeability and absorption.

Journal of Pharmacological and Toxicological Methods 2000, 44,
301–312.

3. Shah, P.; Jogani, V.; Bagchi, T.; Misra, A. Role of caco-2 cell mono-

layers in the prediction of intestinal drug absorption.

Biotechnology Progress 2006, 22, 186–198.
4. Ungell, A.B. Caco-2 replace or refine? Drug Discovery Today

Technologies 2004, 1, 423–430.
5. Jung, S.J.; Choi, S.O.; Um, S.Y.; Kim, J.I.; Choo, H.Y.P.; Choi, S.Y., etc.

Prediction of the permeability of drugs through study on

quantitative structure permeability relationship. Journal of

Pharmaceutical and Biomedical Analysis 2006, 41, 469–475.
6. Artursson, P.; Karlsson, J. correlation between oral drug absorption

in humans and apparent drug permeability coefficients in human

intestinal epithelial (Caco-2) cells; Biochemical and Biophysical

Research Communications 1991, 175, 880–885.
7. Lennernas, H.; Palm, K.; Fagerholm, U.; Artursson, P. Comparison

between active and passive drug transport in human intestinal

epithelial (Caco-2) cells in vitro and human jejunum in vivo.

International Journal of Pharmacy 1996, 127, 103–107.
8. Hubatsch, I.; Ragnarsson, E.G.; Artursson, P. Determination of drug

permeability and prediction of drug absorption in Caco-2 mono-

layers. Nature Protocols 2007, 2, 2111–2119.
9. Sugano, K.; Nabuchi, Y.; Machida, M.; Aso, Y. Prediction of human

intestinal permeability using artificial membrane permeability.

International Journal of Pharmacy 2003, 257, 245–251.
10. Ano, R.; Kimura, Y.; Shima, M.; Matsuno, R.; Ueno, T.; Akamatsu, M.

Relationships between structure and high-throughput screening

permeability of peptide dervatives and related compounds with

artificial membranes: Application to prediction of caco-2 cell per-

meability. Bioorganic & Medicinal Chemistry 2004, 12, 257–264.
11. Corti, G.; Maestrelli, F.; Cirri, M.; Furlanetto, S.; Mura, P.;

Development and evaluation of an in vitro method for prediction

of human drug absorption. Assessment of artificial membrane com-

position. European Journal of Pharmaceutical Sciences 2006, 27,
346–353.

12. Kerns, E.H.; Di, L.; Petusky, S.; Farris, M.; Ley, R.; Jupp, P. Combined

application of parallel artificial membrane permeability assay and

caco-2 permeability assays in drug discovery. Journal of

Pharmaceutical Sciences 2004, 93, 1440–1453.
13. Mensch, J.; Jaroskova, L.; Sanderson, W.; Melis, A.; Mackie, C.;

Verreck, G., etc. Application of PAMPA-models to predict BBB per-

meability including efflux ratio, plasma protein binding and

physicochemical parameters. International Journal of Pharmacy

2010, 395, 182–197.
14. Mensch, J.; Melis, A.; Mackie, C.; Verreck, G.; Brewster, M.E.;

Augustijns, P. Evaluation of various PAMPA models to identify the

most discriminating method for the prediction of BBB permeability.

European Journal of Pharmaceutics and Biopharmaceutics

2010, 74, 495–502.
15. Avdeef, A.; Bendels, S.; Di, L.; Faller, B.; Kansy, M.; Sugano, K., etc.

PAMPA–Critical factors for better predictions of absorption.

Journal of Pharmaceutical Sciences 2007, 96, 2893–2909.
16. Nasal, A.; Bucinski, A.; Bober, L.; Kaliszan, R. Prediction of pharma-

cological classification by means of chromatographic parameters

processed by principal component analysis. International Journal

of Pharmacy 1997: 159, 43–55.
17. Kaliszan, R. Quantitative structure-retention relationships applied

to reversed-phase high-performance liquid chromatography.

Journal of Chromatography A 1993, 656, 417–435.
18. Detroyer, A.; Vander Heyden, Y.; Carda-Broch, S.;

Garcı́a-Alvarez-Coque, M.C.; Massart, D.L.. Quantitative structure-

retention and retention-activity relationships of b-blocking agents

by micellar liquid chromatography. Journal of Chromatography A

2001, 912, 211–221.
19. Bohets, H.; Annaert, P.; Mannens, G.; van Beijsterveldt, L.; Anciaux,

K.; Verboven, P., etc. Strategies for absorption screening in drug dis-

covery and development. Current Topics in Medicinal Chemistry

2001, 1, 367–383.
20. Valkó, K. Application of high-performance liquid chromatography

based measurements of lipophilicity to model biological distribu-

tion. Journal of Chromatography A 2004, 1037, 299–310.
21. Ong, S.; Liu, H.; Pidgeon, C. Immobilized artificial membrane

chromatography: measurements of membrane partition coefficient

and predicting drug membrane permeability. Journal of

Chromatography A 1996, 728, 113–128.
22. Barbato, F.; di Martino, G.; Grumetto, L.; la Rotonda, M.I. ; Prediction

of drug-membrane interactions by IAM-HPLC: Effects of different

phospholipid stationary phases on the partition of bases. European

Journal of Pharmaceutical Sciences 2004, 22, 261–269.
23. Yen, T.E.; Agatonovic-Kustrin, S.; Evans, A.M.; Nation, R.L.; Ryand, J.

Prediction of drug absorption based on immobilized artificial mem-

brane (IAM) chromatography separation and calculated molecular

descriptors. Journal of Pharmaceutical and Biomedical Analysis

2005, 38, 472–478.
24. Berthod, A.; Garcı́a-Alvarez-Coque, M.C. Micellar liquid chromatog-

raphy. Marcel Dekker, New York, NY, 2000.

182 Deconinck et al.



25. Detroyer, A.; Stokbroekx, S.; Bohets, H.; Lorreyne, W.; Timmermans,

P.; Verboven, P., etc. Fast monolithic micellar liquid chromatog-

raphy: An alternative drug permeability assessing method for high-

throughput screening. Analytical Chemistry 2004, 76, 7304–7309.
26. Detroyer, A.; Vander Heyden, Y.; Cambré, I.; Massart, D.L.
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